MOTION OF A CURVILINEAR NET ON NORMAL LOCALIZED IMPACT

A. S. Kovenya ${ }^{\text {a }}$ and M. D. Martynenko ${ }^{\text {b }}$

UDC 624.074.4.042.8

Within the framework of a continuous computational model, the authors obtained equations of motion for a curvilinear netted structure that in the initial state has the shape of a spherical netted dome. The motion of the net in the case of loading of one node by a normal localized impact is considered.

In [1-3], an investigation of the motion of a plane net consisting of two systems of extensible threads that in the initial state of rest formed a square net in a plane was conducted. In the present work we consider a curvilinear netted structure formed by two systems of orthogonal threads that in the initial state form a spherical netted dome. Following [1-4], we use a so-called continuous computational model that involves three groups of equations: equations of motion, geometric relationships between deformations and displacements, and relations of elasticity, in other words, equations of state of the computational model (Fig. 1).

For this, we introduce a curvilinear coordinate system of mixed type: Lagrange coordinates S_{1} and S_{2} and Cartesian coordinates X_{1}, X_{2}, and X_{3} (global coordinates), and we consider a certain small element of the net that is a curvilinear rectangle with sides $d s_{1}$ and $d s_{2}$ and is oriented along the lines S_{1} and S_{2}. This leads to the following equations of motion of the net element:

$$
\begin{equation*}
\sum_{i=1}^{2} \frac{\partial\left(\mathbf{N}_{i} \cdot \cos \beta_{j}^{i}\right)}{\partial s_{i}}+\mathbf{F}_{j}=\rho \frac{\partial^{2} u_{j}}{\partial t^{2}}, j=\overline{1,3}, \tag{1}
\end{equation*}
$$

where u_{j} are the displacements of the net particles; $\beta_{j}^{!}$and β_{j}^{2} are, respectively, the angles of rotation of the sides $d s_{1}$ and $d s_{2}$ relative to the axes of the Cartesian coordinates.

The differential relations for the deformation components can be represented as follows:

$$
\begin{equation*}
\frac{1}{R}\left(\frac{\partial u}{\partial \varphi_{1}}+w\right)=\varepsilon_{1} ; \frac{1}{R}\left(\frac{\partial v}{\partial \varphi_{2} \sin \varphi_{1}}+u \operatorname{ctan} \varphi_{1}+w\right)=\varepsilon_{2} \tag{2}
\end{equation*}
$$

To describe displacements in the global system X_{1}, X_{2}, and X_{3}, we use the angles of rotation β_{j}^{1} and β_{j}^{2} of the sides $d s_{1}$ and $d s_{2}$, respectively, relative to the axes of the Cartesian coordinates, adding to them the angles β_{j}^{3} of rotation of the normal ω relative to the X_{1}, X_{2}, and X_{3} axes. Here the following correspondences can be established:

$$
\begin{gather*}
u_{j}=u \cos \beta_{j}^{1}+v \cos \beta_{j}^{2}+w \cos \beta_{j}^{3} \tag{3}\\
u=\sum_{j=1}^{3} u_{j} \cos \beta_{j}^{1} ; v=\sum_{j=1}^{3} u_{j} \cos \beta_{j}^{2} ; w=\sum_{j=1}^{3} u_{j} \cos \beta_{j}^{3} . \tag{4}
\end{gather*}
$$

To simplify the representation, we adopt the notation

[^0]

Fig. 1. Computational scheme for describing the stressed-deformed state of an element of a curvilinear net.

$$
\begin{equation*}
l_{i}=\cos \beta_{1}^{i} ; \quad m_{i}=\cos \beta_{2}^{i} ; \quad n_{i}=\cos \beta_{3}^{i} \tag{5}
\end{equation*}
$$

Thus, the investigation of the net motion is reduced to solution of the following system of differential equations:

$$
\begin{gather*}
a \sum_{i=1}^{2} \frac{\partial\left(\mathbf{N}_{i} \cos \beta_{j}^{i}\right)}{\partial \varphi_{i}}+\mathbf{F}_{j}=\rho \frac{\partial^{2} u_{j}}{\partial t^{2}}, \tag{6}\\
\varepsilon_{i}=a \sum_{j=1}^{3} \frac{\partial u_{j}}{\partial \varphi_{i}} \cos \beta_{j}^{i}+b \sum_{j=1}^{3} u_{j} \cos \beta_{j}^{1} \tag{7}\\
\mathbf{N}_{i}=\mathbf{N}\left(\varepsilon_{i}\right), \tag{8}\\
\sum_{j=1}^{3} \cos ^{2} \beta_{j}^{n}=1, j=\overline{1,3} ; n=\overline{1,3} ; i=\overline{1,2} \tag{9}
\end{gather*}
$$

where $a=1 / R\left(\delta_{2 i} \sin \varphi_{1}+\delta_{1 i}\right) ; b=\delta_{2 i} \cot \varphi_{1} / R(i=\overline{1,2}) ; \delta_{i k}$ is the Kronecker symbol.
Differentiating Eq. (7) with respect to φ_{1} and φ_{2} and neglecting terms of second order of smallness, we obtain

$$
\begin{equation*}
\frac{\partial \varepsilon_{i}}{\partial \varphi_{i}}=a \sum_{j=1}^{3} \frac{\partial^{2} u_{j}}{\partial \varphi_{i}^{2}} \cos \beta_{j}^{i}+b \sum_{j=1}^{3} \frac{\partial u_{j}}{\partial \varphi_{i}} \cos \beta_{j}^{1}-c \sum_{j=1}^{3} u_{j} \cos \beta_{j}^{3} \tag{10}
\end{equation*}
$$

where $c=\delta_{2 i} \cos \varphi_{1} / R$.
For each of the two conditional families of threads the following relations also hold:

$$
\begin{equation*}
\left(1+\varepsilon_{i}\right) \cos \beta_{j}^{i}=\delta_{j i}+\frac{1}{R} \frac{\partial u_{j}}{\partial \varphi_{i}}, \quad i=\overline{1,2} ; j=\overline{1,3} \tag{11}
\end{equation*}
$$

Hence, using Eq. (10), we have

$$
\frac{\partial \cos \beta_{j}^{i}}{\partial \varphi_{i}}=\frac{1}{1+\varepsilon_{i}}\left(\frac{1}{R} \frac{\partial^{2} u_{j}}{\partial \varphi_{i}^{2}}-a \sum_{n=1}^{3} \frac{\partial^{2} u_{j}}{\partial \varphi_{i}^{2}} \cos \beta_{n}^{i} \cos \beta_{j}^{i}-b \sum_{n=1}^{3} \frac{\partial u_{j}}{\partial \varphi_{i}} \cos \beta_{n}^{1} \cos \beta_{j}^{i}+\right.
$$

$$
\begin{equation*}
\left.+c \sum_{n=1}^{3} u_{j} \cos \beta_{n}^{3} \cos \beta_{j}^{i}\right) \tag{12}
\end{equation*}
$$

Next, it must be taken into account $[5,6]$ that

$$
\begin{equation*}
\frac{\partial \mathbf{N}_{i}}{\partial \varphi_{i}}=\frac{d \mathbf{N}_{i}}{d \varepsilon_{i}} \frac{\partial \varepsilon_{i}}{\partial \varphi_{i}} ; \rho \frac{\partial^{2} u_{j}}{\partial t^{2}}=E \frac{\partial^{2} u_{j}}{\partial \varphi_{i}^{2}} \tag{13}
\end{equation*}
$$

Using expressions (10)-(13), we transform Eqs. (6)-(9) to the form

$$
\begin{align*}
& \frac{\partial^{2} u_{1}}{\partial \varphi_{1}^{2}}\left[A_{1}^{2} l_{1}^{2}+F_{1}^{2}-P_{1}^{2}\left(l_{1}^{2}+l_{1} m_{1}+l_{1} n_{1}\right)\right]+\frac{\partial^{2} u_{2}}{\partial \varphi_{1}^{2}} A_{1}^{2} l_{1} m_{1}+\frac{\partial^{2} u_{3}}{\partial \varphi_{1}^{2}} A_{1}^{2} l_{1} n_{1}+ \\
& +\frac{\partial^{2} u_{1}}{\partial \varphi_{2}^{2}}\left[A_{2}^{2} l_{2}^{2}+F_{2}^{2}-P_{2}^{2}\left(l_{2}^{2}+l_{2} m_{2}+l_{2} n_{2}\right)\right]+\frac{\partial^{2} u_{2}}{\partial \varphi_{2}^{2}} A_{2}^{2} l_{2} m_{2}+\frac{\partial^{2} u_{3}}{\partial \varphi_{2}^{2}} A_{2}^{2} l_{2} n_{2}+ \\
& +\frac{\partial u_{1}}{\partial \varphi_{2}}\left[B_{2}^{2} l_{1} l_{2}-K_{2}^{2}\left(l_{1} l_{2}+l_{2} m_{1}+l_{2} n_{1}\right)\right]+\frac{\partial u_{2}}{\partial \varphi_{2}} B_{2}^{2} l_{2} m_{1}+\frac{\partial u_{3}}{\partial \varphi_{2}} B_{2}^{2} l_{2} n_{1}+ \\
& +u_{1}\left[D_{2}^{2}\left(l_{2} l_{3}+l_{2} m_{3}+l_{2} n_{3}\right)-C_{2}^{2} l_{2} l_{3}\right]-u_{2} C_{2}^{2} l_{2} m_{3}-u_{3} C_{2}^{2} l_{2} n_{3}=\rho \frac{\partial^{2} u_{1}}{\partial t^{2}} ; \tag{14}\\
& \frac{\partial^{2} u_{1}}{\partial \varphi_{1}^{2}} A_{1}^{2} l_{1} m_{1}+\frac{\partial^{2} u_{2}}{\partial \varphi_{1}^{2}}\left[A_{1}^{2} m_{1}^{2}+F_{1}^{2}-P_{1}^{2}\left(m_{1}^{2}+l_{1} m_{1}+m_{1} n_{1}\right)\right]+\frac{\partial^{2} u_{3}}{\partial \varphi_{1}^{2}} A_{1}^{2} m_{1} n_{1}+ \\
& +\frac{\partial^{2} u_{1}}{\partial \varphi_{2}^{2}} A_{2}^{2} l_{2} \dot{m}_{2}+\frac{\partial^{2} u_{2}}{\partial \varphi_{2}^{2}}\left[A_{2}^{2} m_{2}^{2}+F_{2}^{2}-P_{2}^{2}\left(m_{2}^{2}+l_{2} m_{2}+m_{2} n_{2}\right)\right]+\frac{\partial^{2} u_{3}}{\partial \varphi_{2}^{2}} A_{2}^{2} m_{2} n_{2}+ \\
& +\frac{\partial u_{1}}{\partial \varphi_{2}} B_{2}^{2} l_{1} m_{2}+\frac{\partial u_{2}}{\partial \varphi_{2}}\left[B_{2}^{2} m_{1} m_{2}-K_{2}^{2}\left(l_{1} m_{2}+m_{1} m_{2}+m_{2} n_{1}\right)\right]+\frac{\partial u_{3}}{\partial \varphi_{2}} B_{2}^{2} m_{2} n_{1}- \\
& -u_{1} C_{2}^{2} l_{3} m_{2}+u_{2}\left[D_{2}^{2}\left(l_{3} m_{2}+m_{2} m_{3}+m_{2} n_{3}\right)-C_{2}^{2} m_{2} m_{3}\right]-u_{3} C_{2}^{2} m_{2} n_{3}=\rho \frac{\partial^{2} u_{2}}{\partial t^{2}} ; \\
& \frac{\partial^{2} u_{1}}{\partial \varphi_{1}^{2}} A_{1}^{2} l_{1} n_{1}+\frac{\partial^{2} u_{2}}{\partial \varphi_{1}^{2}} A_{1}^{2} m_{1} n_{1}+\frac{\partial^{2} u_{3}}{\partial \varphi_{1}^{2}}\left[A_{1}^{2} n_{1}^{2}+F_{1}^{2}-P_{1}^{2}\left(n_{1}^{2}+l_{1} n_{1}+m_{1} n_{1}\right)\right]+ \\
& +\frac{\partial^{2} u_{1}}{\partial \varphi_{2}^{2}} A_{2}^{2} l_{2} n_{2}+\frac{\partial^{2} u_{2}}{\partial \varphi_{2}^{2}} A_{2}^{2} m_{2} n_{2}+\frac{\partial^{2} u_{3}}{\partial \varphi_{2}^{2}}\left[A_{2}^{2} n_{2}^{2}+F_{2}^{2}-P_{2}^{2}\left(n_{2}^{2}+l_{2} n_{2}+m_{2} n_{2}\right)\right]+ \\
& +\frac{\partial u_{1}}{\partial \varphi_{2}} B_{2}^{2} l_{1} n_{2}+\frac{\partial u_{2}}{\partial \varphi_{2}} B_{2}^{2} m_{1} n_{2}+\frac{\partial u_{3}}{\partial \varphi_{2}}\left[B_{2}^{2} n_{1} n_{2}-K_{2}^{2}\left(l_{1} n_{2}+m_{1} n_{2}+n_{1} n_{2}\right)\right]- \\
& -u_{1} C_{2}^{2} l_{3} n_{2}-u_{2} C_{2}^{2} m_{3} n_{2}+u_{3}\left[D_{2}^{2}\left(l_{3} n_{2}+m_{3} n_{2}+n_{3} n_{2}\right)-C_{2}^{2} n_{2} n_{3}\right]=\rho \frac{\partial^{2} u_{3}}{\partial t^{2}},
\end{align*}
$$

Fig. 2. Fragment of the netted region on exposure of the upper node of a dome to a normal localized impact.
where

$$
\begin{aligned}
& A_{i}^{2}=a^{2} \frac{d \mathbf{N}_{i}}{d \varepsilon_{i}} ; \quad B_{i}^{2}=a b \frac{d \mathbf{N}_{i}}{d \varepsilon_{i}} ; \quad C_{i}^{2}=a c \frac{d \mathbf{N}_{i}}{d \varepsilon_{i}} ; \quad P_{i}^{2}=a^{2} \frac{\mathbf{N}_{i}}{1+\varepsilon_{i}}, \\
& K_{i}^{2}=a b \frac{\mathbf{N}_{i}}{1+\varepsilon_{i}} ; \quad F_{i}^{2}=\frac{a}{R} \frac{\mathbf{N}_{i}}{1+\varepsilon_{i}} ; \quad D_{i}^{2}=a c \frac{\mathbf{N}_{i}}{1+\varepsilon_{i}}, \quad i=1,2 .
\end{aligned}
$$

Next, we consider a curvilinear netted structure in the shape of a spherical netted dome with a rise $f=$ R, fastened on a rigid supporting contour in the form of a ring of radius R. We assume that the rods that make up the dome are manufactured from a linearly elastic material; in this case the equations of motion of the net (14) can be written in the following form (to be specific, below we give only one equation of system (14)):

$$
\begin{gathered}
\frac{\partial^{2} u_{1}}{\partial \varphi_{1}^{2}}\left[l_{1}^{2}+\frac{\varepsilon_{1}}{1+\varepsilon_{1}}\left(1-l_{1}^{2}-l_{1} m_{1}-l_{1} n_{1}\right)\right]+\frac{\partial^{2} u_{2}}{\partial \varphi_{1}^{2}} l_{1} m_{1}+\frac{\partial^{2} u_{3}}{\partial \varphi_{1}^{2}} l_{1} n_{1}+ \\
+\frac{\partial^{2} u_{1}}{\partial \varphi_{2}^{2}} \frac{1}{\sin ^{2} \varphi_{1}}\left[l_{2}^{2}+\frac{\varepsilon_{2}}{1+\varepsilon_{2}}\left(\sin \varphi_{1}-l_{2}^{2}-l_{2} m_{2}-l_{2} n_{2}\right)\right]+\frac{\partial^{2} u_{2}}{\partial \varphi_{2}^{2}} \frac{1}{\sin ^{2} \varphi_{1}} l_{2} m_{2}+
\end{gathered}
$$

TABLE 1. Change in the State Parameters of the $\operatorname{Node} A\left(\frac{\pi}{10}, 0\right)$ with Time (the impact velocity is $50 \mathrm{~m} / \mathrm{sec} ; u_{1}=0$)

t, sec	$u_{2}, \mathrm{~m}$	$u_{3}, \mathrm{~m}$
$6.0 \cdot 10^{-5}$	$3.5 \cdot 10^{-12}$	$-1.3 \cdot 10^{-8}$
$9.0 \cdot 10^{-5}$	$2.2 \cdot 10^{-11}$	$-9.4 \cdot 10^{-8}$
$1.2 \cdot 10^{-4}$	$7.5 \cdot 10^{-11}$	$-3.8 \cdot 10^{-7}$
$1.5 \cdot 10^{-4}$	$1.8 \cdot 10^{-10}$	$-1.2 \cdot 10^{-6}$
$1.8 \cdot 10^{-4}$	$3.0 \cdot 10^{-10}$	$-2.8 \cdot 10^{-6}$
$2.7 \cdot 10^{-4}$	$-6.0 \cdot 10^{-10}$	$-2.1 \cdot 10^{-5}$
$3.0 \cdot 10^{-4}$	$-2.6 \cdot 10^{-9}$	$-3.6 \cdot 10^{-5}$
$3.6 \cdot 10^{-4}$	$-1.5 \cdot 10^{-8}$	$-8.8 \cdot 10^{-5}$
$3.9 \cdot 10^{-4}$	$-2.8 \cdot 10^{-8}$	$-1.3 \cdot 10^{-4}$
$4.8 \cdot 10^{-4}$	$-1.3 \cdot 10^{-7}$	$-3.7 \cdot 10^{-4}$
$6.0 \cdot 10^{-4}$	$-5.8 \cdot 10^{-7}$	$-1.1 \cdot 10^{-3}$

$$
\begin{gathered}
+\frac{\partial^{2} u_{3}}{\partial \varphi_{2}^{2}} \frac{1}{\sin ^{2} \varphi_{1}} l_{2} n_{2}+\frac{\partial u_{1}}{\partial \varphi_{2}} \frac{\cos \varphi_{1}}{\sin ^{2} \varphi_{1}}\left[l_{1} l_{2}-\frac{\varepsilon_{2}}{1+\varepsilon_{2}}\left(l_{1} l_{2}+l_{2} m_{1}+l_{2} n_{1}\right)\right]+\frac{\partial u_{2}}{\partial \varphi_{2}} \frac{\cos \varphi_{1}}{\sin ^{2} \varphi_{1}} l_{2} m_{1}+ \\
+\frac{\partial u_{3}}{\partial \varphi_{2}} \frac{\cos \varphi_{1}}{\sin ^{2} \varphi_{1}} l_{2} n_{1}+u_{1} \operatorname{ctan} \varphi_{1}\left[\frac{\varepsilon_{2}}{1+\varepsilon_{2}}\left(l_{2} l_{3}+l_{2} m_{3}+l_{2} n_{3}\right)-l_{2} l_{3}\right]-u_{2} \operatorname{ctan} \varphi_{1} l_{2} m_{3}- \\
-u_{3} \operatorname{ctan} \varphi_{1} l_{2} n_{3}=\frac{R^{2} \rho}{E} \frac{\partial^{2} u_{1}}{\partial t^{2}} .
\end{gathered}
$$

The mixed problem obtained was solved numerically in the region (Fig. 2)

$$
D=\left\{0 \leq \varphi_{1} \leq \frac{\pi}{2} ; \quad 0 \leq \varphi_{2} \leq \frac{\pi}{2} ; \quad 0 \leq t \leq T\right\}
$$

Here, as the initial conditions, we selected ones that simulate impact against the upper node of the netted dome fastened on the rigid circular supporting contour:

$$
\begin{align*}
& t=0, \quad 0 \leq \varphi_{1} \leq \frac{\pi}{2}, \quad 0 \leq \varphi_{2} \leq \frac{\pi}{2}: u_{1}=u_{2}=u_{3}=0 \\
& t \geq 0, \quad \varphi_{1}=0, \quad 0 \leq \varphi_{2} \leq \frac{\pi}{2}: \frac{\partial u_{1}}{\partial t}=\frac{\partial u_{2}}{\partial t}=0 ; \frac{\partial u_{3}}{\partial t}=V \\
& t \geq 0, \quad 0 \leq \varphi_{1} \leq \frac{\pi}{2}, \quad 0 \leq \varphi_{2} \leq \frac{\pi}{2}: \frac{\partial u_{1}}{\partial t}=\frac{\partial u_{2}}{\partial t}=\frac{\partial u_{3}}{\partial t} \tag{15}\\
& t>0, \quad \varphi_{1}=\frac{\pi}{2}, \quad 0 \leq \varphi_{2} \leq \frac{\pi}{2}: u_{1}=u_{2}=u_{3}=0
\end{align*}
$$

In particular, conditions (15) mean the following: at the instant of the action of a certain pulse load on the net, the point with the coordinate $\varphi_{1}=0$ acquires some instantaneous velocity V; in addition, it was assumed that the propagation velocity of perturbations is independent of the direction in the global coordinate system X_{1}, X_{2}, and X_{3}.

To solve the problem, we used a three-layer difference scheme. An analysis of the calculation results allows us to obtain the scheme of deformation of the netted structure over a certain fixed time interval. We present results of calculations for a net node located near the dome vertex (see Table 1).

In conclusion it should be noted that the method used makes it possible to evaluate the strength properties of a netted structure in a wide range of dynamic loads.

NOTATION

R, radius of curvature; r, radius of the parallel circle; \mathbf{N}, linear force; ρ, specific surface density of the net; ε, relative deformation; \mathbf{F}, specific surface load on the net; E, Young's modulus; β, direction angle; l, m, and n, cosines of the direction angles; V, velocity of motion of the net node; u, v, w, displacements in the local coordinate system; t, time.

REFERENCES

1. O. K. Kasumov, Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 57-61 (1983).
2. D. G. Agalarov, Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 6, 38-41 (1982).
3. V. T. Aliev, Numerical Solution of the Problem of Wave Propagation on Localized Impact against a Net Fastened on a Frame[in Russian], Moscow (1986); Dep. at VINITI 29.12.86, No. 8940-386.
4. G. I. Pshenichnov, Theory of Thin Elastic Netted Shells and Plates [in Russian], Moscow (1982).
5. Kh. A. Rakhmatulin and Yu. A. Dem'yanov, Strength in the Case of Intense Brief Loads [in Russian], Moscow (1961).
6. Yu. N. Rabotnov, Mechanics of a Deformable Solid [in Russian], Moscow (1988).

[^0]: ${ }^{\text {a }}$ Computational-Analytical Center of the Ministry of Education of the Republic of Belarus; ${ }^{6}$ Belarusian State University, Minsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 73, No. 4, pp. 773-777, July-August, 2000. Original article submitted August 16, 1999.

